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Abstract

The Maximum Balanced Biclique Problem (MBBP) is a prominent model with nu-
merous applications. Yet, the problem is NP-hard and thus computationally chal-
lenging. We propose novel ideas for designing effective exact algorithms for MBBP
in bipartite graphs. First, an Upper Bound Propagation (UBP) procedure to pre-
compute an upper bound involving each vertex is introduced. Then we extend a
simple Branch-and-Bound (B&B) algorithm by integrating the pre-computed up-
per bounds. Based on UBP, we also study a new integer linear programming model
of MBBP which is more compact than an existing formulation [5]. We introduce new
valid inequalities induced from the upper bounds to tighten these mathematical for-
mulations for MBBP. Experiments with random bipartite graphs demonstrate the
efficiency of the extended B&B algorithm and the valid inequalities generated on
demand. Further tests with 30 real-life instances show that, for at least three very
large graphs, the new approaches improve the computational time with four orders
of magnitude compared to the original B&B.
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1 Introduction

Given a bipartite graph G = (U, V,E) with two disjoint vertex sets U , V and
an edge set E ⊆ U×V , a biclique A∪B (or (A,B)) is the union of two subsets
of vertices A ⊆ U , B ⊆ V such that ∀i ∈ A, ∀j ∈ B, {i, j} ∈ E. In other words,
the subgraph induced by vertex set A ∪ B is a complete bipartite graph. If
|A| = |B|, then biclique (A,B) is a balanced biclique. The Maximum Balanced
Biclique Problem (MBBP) is to find a balanced biclique (A,B) of maximum
cardinality. As |A| = |B| holds for a balanced biclique (A,B), MBBP is then
to find the maximum half-size balanced biclique. MBBP is a special case of
the conventional maximum clique problem [17].

MBBP is a prominent model with a large range of applications, such as na-
noelectronic system design [1,14], biclustering of gene expression data in com-
putational biology [4] and PLA-folding in the VLSI theory [10]. In all these
applications, the given graphs are bipartite graphs. In terms of computational
complexity, the decision version of MBBP is NP-Complete [6,2], though the
maximum biclique problem in bipartite graphs (without requiring |A| = |B|)
is polynomially solvable by the maximum matching algorithm [4].

Considerable effort has been devoted to the pursuit of effective algorithms for
MBBP in bipartite graphs, both theoretically and practically. Heuristic algo-
rithms represent the most popular approach for MBBP, though they do not
guarantee the optimality of the attained solutions. The majority of existing
heuristic algorithms solve the equivalent maximum balanced independent set
(a vertex set such that no two vertices are adjacent) problem in the com-
plement bipartite graph, rather than directly seeking the maximum balanced
biclique from the given graph. For example, several greedy heuristic algo-
rithms were proposed, which apply vertex-deletion rules on the complement
bipartite graph in the period from 2006 to 2014 [1,14,18,19], while an evo-
lutionary algorithm combining structure mutation and repair-assisted restart
was introduced in 2015 [20].

On the other hand, according to our literature review, there are only two
studies on exact algorithms. In [14], a recursive exact algorithm for searching
a maximum balanced independent set with a given half-size in the comple-
ment graph was proposed. However, the computational time of this algorithm
becomes prohibitive when the number of vertices of the given graph exceeds
(32,32). In [9], a Branch-and-Bound (B&B) algorithm for MBBP (named BB-
Clq) for general graphs (including non-bipartite graphs) was studied. The
algorithm incorporates a clique cover technique for upper bound estimation
(an equivalent technique of using graph coloring to estimate the upper bound
for the maximum clique problem) and employs lex symmetry breaking tech-
niques for general graphs. As far as we know, this algorithm is currently the
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best performing exact algorithm, even though the bounding technique and
symmetry breaking techniques are only effective for non-bipartite graphs.

In addition to specifically designed exact algorithms, the general Integer Lin-
ear Programming (ILP) constitutes an interesting alternative for solving hard
combinatorial problems such as MBBP. Commercial mixed ILP solvers, like
IBM CPLEX, can even solve some hard instances which cannot be handled
by other approaches. Meanwhile, the success of a ILP solver highly depends
on the tightness of the mathematical formulation of the problem. For MBBP,
an ILP formulation has been proposed in [5], which is based on the comple-
ment graph. Another mathematical formulation that defines the constraints
on the original graph was presented in [20]. However, this formulation was not
applicable for ILP solvers as it contains non-linear constraints.

In this work, we introduce new ideas for developing effective exact algorithms
for MBBP, which help to solve very large MBBP instances from applications
like social networks. Our main contributions can be summarized as follows.

First, we elaborate an Upper Bound Propagation (UBP) procedure inspired
from [13], which produces an upper bound of the maximum balanced biclique
involving each vertex in the bipartite graph. UBP propagates the initial upper
bound involving each vertex and achieves an even tighter upper bound for each
vertex. UBP is independent from the search procedure and is performed before
the start of the search algorithm. An extended exact algorithm, denoted by
ExtBBClq, is proposed by taking advantage of UBP to improve BBClq, the
branch-and-bound algorithm introduced in [9].

Second, we introduce a new and more compact formulation that requires a
largely reduced number of constraints compared to the previous formulation
presented in [5]. In the previous model of [5], the number of constraints equals
the number of edges in the complement bipartite graph, making it inapplicable
to solve large real-life sparse graphs. The proposed model reduces the number
of constraints to the number of vertices in the graph, which allows for dealing
with very large instances. We also introduce new inequalities to tighten both
previous and new formulations. Our computational results suggest that the
new formulation and tightened inequalities improve the performance of the
ILP solver CPLEX.

The remainder of the paper is organized as follows. Section 2 introduces the
notations that will be used throughout the paper and Section 3 reviews the
BBClq algorithm introduced in [9]. In Section 4, we present our Upper Bound
Propagation procedure for upper bound estimation and explain how to use
it to improve BBClq. In Section 5, we discuss the existing ILP formulation
for MBBP and present our new ILP model. We also study how the upper
bounds can lead to new valid inequalities to tighten the ILP formulations.
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Computational results and experimental analyses are presented in Section 6,
followed by conclusions and future working directions.

2 Notations

1 2 3 4 5

6 7 8 9 10

Fig. 1. A bipartite graph G = (U, V,E), U = {1, 2, 3, 4, 5}, V = {6, 7, 8, 9, 10}.

Given a bipartie graph G = (U, V,E) (|U | ≤ |V | if not specifically stated), let
(A,B) ⊆ (U, V ) be a balanced biclique of G (i.e., |A| = |B|). The half-size of
the balanced biclique (A,B) is the cardinality of |A| (or |B|). For example,
in Figure 1, ({2, 3}, {7, 8}) is a balanced biclique of half-size of 2. For all
S ⊆ U ∪V , G[S] denotes the subgraph of G induced by S. Given a vertex i in
G, the set of vertices adjacent to i is denoted by N(i) = {j : {i, j} ∈ E} and
degG(i) = |N(i)| is the degree of vertex i. The upper bound involving vertex i,
denoted by ubi, is an upper bound of the half-size of the maximum balanced
biclique containing vertex i. For example, in Figure 1, a possible value for ub1
could be 2, since degG(1) = 2.

3 Review of the BBClq algorithm

To our knowledge, the B&B algorithm BBClq presented in [9] is the current
best-performing exact algorithm for MBBP for general graphs. The algorithm
is mainly inspired from the well-known algorithms [15,12] for the maximum
clique problem. Algorithm 1 shows the general search scheme of BBClq.

BBClq recursively builds two sets A and B such that (A,B) forms a bi-
clique. It maintains a candidate set CA (CB) that includes vertices which
are eligible to join A (B) while ensuring that (A,B) is a biclique (i.e., CA =⋂

i∈B N(i), CB =
⋂

i∈A N(i)). Initially, the algorithm sets lb, the global lower
bound on the maximum biclique half-size to 0 and starts the search by calling
BBClq(G, ∅, ∅, U, V ).

At each recursive call to BBClq, a vertex i (called branch vertex) is moved
from CA (lines 7-8). The algorithm then considers the branches (possibilities)
of i ∈ A (lines 9-12) and i /∈ A in the next while loop. The bounding procedure
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(line 9) prunes the branch of i ∈ A if the upper bound after estimation in this
context is not larger than the global lower bound. The upper bound estimating
method, which is classically a key point concerning the performance of a B&B
algorithm, will be introduced in the following section. If the current branch
is not pruned, the search goes on by reconstructing A′ with a new vertex v
and C ′

B by filtering from CB those vertices not adjacent to v (every vertex in
B must be adjacent to every vertex in A). After updating the two sets, the
algorithm recursively calls BBClq in line 12, swapping the roles of A and B,
as A and B are extended alternatively for the sake of satisfying the balance
requirement. The above process is repeated in the next recursive call of BBClq.

When the algorithm loops back to line 4, as we just mentioned, it explores
another branch implying i /∈ A. The while loop stops when CA becomes
empty or when the remaining vertices in CA do not allow to build a solution
better than the global lower bound (lines 5-6). Besides, since |A| + 1 = |B|
or |A| = |B| holds each time BBClq is called, we update the lower bound in
lines 1-3 once |A| > lb and store the incumbent solution (A,B) as the best
solution found so far. As a result, the best solution (A∗, B∗) is an optimal
biclique with |A∗| = lb (A∗ ⊆ U or A∗ ⊆ V ), but it may not be totally
balanced (|A∗| − |B∗| ≤ 1). Thus, in line 13, the procedure of retrieving the
maximum balanced biclique (of half-size lb) from a biclique is accomplished
by make balance(). This procedure simply removes vertices from the larger set
A∗ or B∗ until a balanced biclique is obtained.

Figure 1 is used to illustrate BBClq. Initially, lb = 0 and BBClq(G, ∅, ∅, U, V )
is called. According to the minimal degree heuristic in [9], vertex 1 is chosen
as the first branch vertex. Clearly, the current upper bound is greater than
0, the algorithm proceeds to BBClq(G, ∅, {1}, {6, 7}, U \ {1}) to explore the
solutions containing vertex 1. As a result, the solution ({1}, {6}) is found and
lb is updated to 1. Likewise, the algorithm selects 5 as the second branch
vertex in the following loop, proceeds to BBClq(G, ∅, {5}, {8, 10}, U \{1, 5}) if
no upper bounding technique is applied. We can see that this recursive call to
BBClq has to explore the case of expanding the given biclique by adding vertex
8 or 10. However, with the upper bounding estimating technique proposed in
this paper, the call of BBClq(G, ∅, {5}, {8, 10}, U \ {1, 5}) will not even start
since the upper bound involving vertex 5 is 1 (upper bound({5}) = lb = 1).
The algorithm finds the optimal solution ({1, 2}, {4, 5}) after the third loop
(which explores A = {2} and calls BBClq(G, ∅, {2}, {7, 8, 9}, U \ {1, 5, 2})).
There will be no additional iteration as |A|+ |CA| ≤ 2 (A = ∅, CA = {3, 4}).

Note that the BBClq version we presented is a trimmed version of the orig-
inal algorithm in [9] since we mainly focus on solving MBBP in bipartite
graphs. First, symmetric breaking is ignored as it is not concerned for bipar-
tite graphs. Second, the original algorithm calculates a clique cover (by con-
sidering the graph coloring problem on the complement graph) to estimate
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the upper bound in a general graph based on the fact that sets A and B are
independent sets. However in bipartite graphs, the upper bound found by this
technique is trivial as the two vertex sets of the input graph are necessarily
independent sets. Hence, we do not keep this technique in BBClq neither.

Algorithm 1: BBClq(G, A, B, CA, CB), the trimmed B&B algorithm for
MBBP from [9]

Input: Graph instance G = (U, V,E), A, B - current sets that form a
biclique, CA, CB - the sets of eligible vertices that can be added to A
and B respectively

Output: A maximum balanced biclique of G.
1 if |A| > lb then
2 lb← |A|
3 Record current best biclique in (A∗, B∗)

4 while CA 6= ∅ do
5 if |A|+ |CA| ≤ lb then
6 return

7 i← branch vertex(CA)
8 CA ← CA \ {i}
9 if upper bound(A ∪ {i}) > lb then

10 A′ ← A ∪ {i}
11 C ′

B ← CB ∩N(i)
12 BBClq(G,B, A′, C ′

B, CA)

13 return make balance(A∗, B∗)

4 Upper bound propagation and its use to improve BBClq

In this section, we introduce our Upper Bound Propagation procedure (UBP)
which is a pre-processing technique to reinforce the BBClq algorithm presented
in the last section.

4.1 The upper bound propagation procedure

For each vertex, an upper bound on the half-size of any maximum balanced
biclique involving that vertex. UBP is based on the following propositions.

Proposition 1 For each vertex i ∈ U ∪ V , degG(i) is an upper bound on the
maximum half-size balanced biclique involving i.
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This proposition is obviously true since the half-size of a balanced biclique
cannot exceed the degree of any vertex in the biclique.

Before presenting the second proposition, let us define wij = |N(i)∩N(j)| for
two vertices i, j ∈ U ∪ V .

Proposition 2 Given a vertex i ∈ U , let yi be the maximum integer such that
there exists at least yi values in {wij : j ∈ U} greater than or equal to yi. Then
yi is an upper bound on the maximum half-size balanced biclique involving i.

Proof : Clearly, in the maximum balanced biclique (A,B) involving i ∈ A,
for any vertex j ∈ A (including i), we have B ⊆ N(i) ∩N(j). Therefore, the
maximum possible value yi such that yi vertices in U share at least yi adjacent
vertices with i is an upper bound involving i. Note that this proposition also
holds given any vertex in V . �

Proposition 3 Given a vertex i ∈ U ∪ V , let ti be the largest integer such
that there exists ti vertices in N(i) having upper bounds at least ti. Then ti is
an upper bound on the maximum half-size balanced biclique involving i.

Proof : We prove this proposition by contrapositive. Suppose ti is not an upper
bound, then there exists a balanced biclique (A′, B′) involving i ∈ A′ of half-
size t′i such that t′i > ti, implying that all the t′i vertices in B′ (B′ ⊆ N(i)) must
have an upper bound of at least t′i (i.e., ∀j ∈ B′, ubj ≥ t′i), which contradicts
the condition that ti is the maximum integer such that there exists in N(i) at
least ti vertices having ti ≥ ubi. �

Consider the example of Figure 1, according to Proposition 1, we have ub1 =
ub5 = 2, ub2 = ub3 = ub4 = 3. Then, following Proposition 2, ub1 can be
improved (decreased) to 1 since w12 = w13 = w14 = 1, w15 = 0 (y1 = 1).
Similarly ub2, ub3, ub4, ub5 can also be improved to 2, 2, 1, 1 respectively. By
Proposition 3, it can be deduced that ub6 = 1 and ub7 = 2 (t6 = 1, t7 = 2),
which are better upper bounds than the degrees.

Based on these propositions, we devise the UBP procedure (see Algorithm
2) to calculate an upper bound involving each vertex. Initially ubi is set to
degG(i), then the upper bound of each vertex in U is improved according to
Proposition 2 (lines 2-9). From line 10 to the end of Algorithm 2, the proce-
dure aims at propagating the upper bound based on Proposition 3 until the
upper bounds cannot be improved any more. The propagation procedure is
guaranteed to converge as the upper bounds cannot be smaller than 0. Exper-
iments in Section 6 show that, for both random and real-life large instances,
UBP converges very fast, only in a limited number of iterations.

In both lines 7 and 14, we use binary search to find, for a given set I of integers,
the maximum element x ∈ I such that there are at least x integers in I that
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are larger than or equal to x. The procedure works as follows: first, I is sorted
by decreasing order, then, an iteration starts by comparing the middle element
with its index in S (i.e., its position in the sorted list). If the middle element
is greater (respectively lesser) than its index, the next iteration proceeds with
the second half (respectively the first half) of I. This binary search procedure
based on dichotomy performs at most log2(|I|) operations.

Actually, we can also tighten the initial upper bound involving each vertex
in V by repeating the process in lines 2-9 after replacing U with V before
the propagating procedure (lines 10-17) starts. However, this procedure re-
quires considerable memory especially for large graphs. The matrix represent-
ing wij, (i, j) ∈ V × V ((i, j) ∈ U × U) requires a space of O(|V |2) (O(|U |2)).
Thus the overhead is not negligible. As a compromise, we set a threshold on
the size of the vertex set. We apply the procedure of lines 2-9 to improve the
upper bound involving each vertex only when the cardinality of the vertex set
(U or V ) is less than the threshold. In the following experiments, the threshold
has empirically been set to 30000.

Algorithm 2: Upper bound propagation procedure

Input: Graph instance G = (U, V,E)
Output: An upper bound vector ub for each vertex in G.

1 ∀i ∈ U ∪ V, ubi ← degG(i)
2 ∀(i, j) ∈ U × U,wij ← 0
3 for k ∈ V do

4 for (i, j) ∈ N(k)×N(k) do
5 wij ← wij + 1

6 for i ∈ U do

7 Binary search for the largest integer yi such that |{j ∈ U : wij ≥ yi}| ≥ yi
8 if yi < ubi then
9 ubi ← yi

10 stable← false
11 while stable 6= true do

12 stable← true
13 for i ∈ U ∪ V do

14 Binary search for the largest integer ti such that
|{j ∈ N(i) : ubj ≥ ti}| ≥ ti

15 if ti < ubi then
16 ubi ← ti
17 stable← false

18 return ub

To see how tight the upper bounds provided by UBP are, consider the example
of Figure 1, the upper bounds achieved by UBP are 1, 2, 2, 1, 1 for vertices of
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U and 1, 2, 2, 2, 1 for vertices of V . These upper bounds are actually all tight.

4.2 Combining UBP with BBClq: ExtBBClq

As UBP is independent of the search algorithm, we use it as a pre-processing
procedure for BBClq to obtain an extended version named ExtBBClq. In
ExtBBClq, we use the same branching heuristic as in the original BBClq
algorithm: the vertex of the minimum degree in CA is given the highest priority
for branching. To efficiently implement ExtBBClq, we sort the arrays N(i)
(∀i ∈ U ∪ V ) in ascending order of index number before the beginning of
BBClq, so that the intersection operation in line 11 (Algorithm 1) can be
accomplished in O(|CB| ∗ log(|N(i)|)) asymptotic time by binary search. More
importantly, to make use of the upper bound information calculated by UBP,
in ExtBBClq, instead of calculating the upper bound by calling the upper
bound estimation method (i.e., upper bound(A ∪ {i}) in line 9, we use the
pre-computed ubi returned by UBP as the upper bound in the current branch.
Given that ExtBBClq is an enumeration algorithm, it has an exponential
complexity.

5 Improving ILP formulation with UBP

In this section, we first recall the mathematical formulation of MBBP intro-
duced in [5]. Then we elaborate our proposed formulation that takes advantage
of the UBP procedure presented in the last section and define new valid in-
equalities to further tighten these formulations.

5.1 Formulation of MBBP from [5]

The following integer linear programming formulation for MBBP was proposed
in [5], which relies on the complement bipartite graph of the input graph.

max ω(G) =
∑

i∈U

xi (1)

subject to:

xi + xj ≤ 1, ∀{i, j} ∈ Ē (2)
∑

i∈U

xi −
∑

j∈V

xj = 0 (3)

xi ∈ {0, 1}, ∀i ∈ U ∪ V (4)
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where each vertex of U ∪ V is associated to a binary variable xi indicat-
ing whether the vertex is part of the biclique, Ē is the set of edges in the
complement bipartite graph of G. Constraint (2) requires that each pair of
non-adjacent vertices cannot be selected at the same time (i.e., the solution
must form a biclique). Constraint (3) enforces that the biclique is balanced.
This formulation contains |Ē|+ 1 inequalities.

5.2 A new ILP formulation with UBP for MBBP

The above formulation contains |Ē|+1 inequalities (constraints). As a result,
it is not applicable to solve large sparse graphs with ILP solvers like CPLEX.
For example, a random sparse graph with 1000 vertices in each partition and
an edge density of 0.1 has an average of 900,000 constraints. In real-life appli-
cations like those used in Section 6, the number of resulting constraints could
be even much higher. To cope with this difficulty, we below propose a new
formulation that relies on the initial graph and involves significantly fewer
constraints for sparse graphs.

max ω(G) = z (5)

subject to:
z =

∑

j∈U

xj (6)

z =
∑

i∈V

xi (7)

xiz ≤
∑

j∈N(i)

xj, ∀i ∈ U ∪ V (8)

xi ∈ {0, 1}, ∀i ∈ U ∪ V (9)

z ∈ Z+ (10)

In the formulation, z is the half-size of the balanced biclique in the bipartite
graph G = (U, V,E). xi is a binary variable associated to vertex i, indicating
whether the corresponding vertex is part of the balanced clique. Constraint
(8) is a quadratic inequality that requires the solution to be a biclique. As
we want a linear model, we replace the quadratic inequality with the linear
inequality:

z − (1− xi)ℓ ≤
∑

j∈NG(i)

xj (11)

where ℓ is a large value bounding z. (Since we have an UBP procedure, we
use ℓ = max

i∈U
ubi in our computational experiments in Section 6).
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It is clear that the new ILP model involves only 2+|U |+|V | constraints, which
are independent from the number of edges in G. For our previous example of a
random sparse graph with 1000 vertices in each partition and an edge density
of 0.1, the new model contains only 2002 constraints, which is drastically less
than the 900,000 constraints required by the model of [5].

5.3 Tightening the ILP formulations

The two formulations can be further tightened by valid inequalities. Let ℓ be
a positive integer, and let Sℓ ⊆ U (or Sℓ ⊆ V ) be the set of all the vertices in
U such that ubi ≤ ℓ for all i ∈ Sℓ. The following inequality is valid for MBBP:

∑

i∈Sℓ

xi ≤ ℓ

This inequality indicates that the vertices in Sℓ can only be part of a balanced
clique with half-size less than ℓ. Moreover, for each vertex j ∈ Sℓ, we can lift
the term associated with xj:

(ℓ− ubj + 1)xj +
∑

i∈Sℓ\{j}

xi ≤ ℓ ∀j ∈ Sℓ−1

The previous inequality can be extended as follows. Let T ℓ be any maximal
neighbor-disjoint subset of Sℓ such that for all i and j ∈ T ℓ, N(i) ∩ N(j) is
empty. The term ‘maximal subset’ means that no vertex i ∈ Sℓ can be added
to T ℓ. Then we can derive the following valid inequality, where Ωℓ is the the
collection of all the maximal neighbor-disjoint subsets of Sℓ

∑

j∈T ℓ

(ℓ− ubj + 1)xj +
∑

i∈Sℓ\T ℓ

xi ≤ ℓ ∀T ℓ ⊆ Ωℓ

Or equivalently,

∑

j∈T ℓ

(ℓ− ubj)xj +
∑

i∈Sℓ

xi ≤ ℓ ∀T ℓ ⊆ Ωℓ (12)

In the following, we tighten the aforementioned formulations of MBBP by
adding these inequalities. However, given a valid upper bound ℓ, Ω can be
made of an exponentially large number of maximal neighbor-disjoint subsets
of Sℓ, since finding a maximal neighbor-disjoint subset in Sℓ is equivalent
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to finding a maximal stable set in the auxiliary graph G′ = (Sℓ, E ′) (E ′ =
{{i, j} : i, j ∈ Sℓ, N(i)∩N(j) 6= ∅}). To balance the tightness of the extended
formulation and computational overhead of solving it, we set ℓ = max

i∈U
ubi

(i.e., Sℓ = U) and only generate |U | inequalities by Algorithm 3. Each new
inequality is associated with a maximal neighbor-disjoint subset seeding with
vertex i ∈ Sℓ.

Algorithm 3: Generating valid inequalities defined in (12).

Input: Graph instance G = (U, V,E), a valid upper bound ℓ, upper bound
ubi associated to each vertex i ∈ U .

Output: |U | valid inequalities
1 Sℓ ← {i ∈ U : ubi ≤ ℓ}
2 for i ∈ Sℓ do

3 T ℓ ← {i}
4 for j ∈ Sℓ and j 6= i do

/* wjk is the number of common adjacent vertices between j
and k, see Sec.2 */

5 if ∀k ∈ T ℓ, wjk = 0 then

6 T ℓ ← T ℓ ∪ {j}

7 Generate an inequality of (12) with T ℓ and Sℓ

One may observe that identical valid inequalities seeding with two vertices i
and j of Sℓ may be generated, but this is not an issue since modern solvers
remove duplicate constraints automatically during pre-solving. The time com-
plexity of Algorithm 3 is bounded in O(|U |3) when Sℓ = U . It is not hard to
see that Inequalities (12) also hold for Sℓ ⊆ V . Setting ℓ = max

i∈V
ubi, we also

generate |V | inequalities associated with maximal neighbor-disjoint subsets of
V .

Naturally, the lower ubi is, the tighter these inequalities are. Consider the
example of Figure 1, since the upper bound involving each vertex is given by
UBP, we can produce the following valid inequalities (ℓ = 2):

• Vertex 1 (and also 4) leads to 2x1 + x2 + x3 + 2x4 + x5 ≤ 2
• Vertex 5 leads to 2x1 + x2 + x3 + x4 + 2x5 ≤ 2
• Vertex 6 leads to 2x6 + x7 + x8 + x9 + x10 ≤ 2
• Vertex 10 leads to x6 + x7 + x8 + x9 + 2x10 ≤ 2

The LP relaxation of the original formulation (1)-(4) yields an objective of
2.5 and nearly all the variables are fractional. Adding these four inequalities
yields an objective of 2 and an integer solution, which proves to be optimal.
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6 Computational experiments

This section is dedicated to a computational evaluation of the proposed algo-
rithms for MBBP. All the experiments were conducted on a computer with
an Intel Xeon c© E5-2670 processor (2.5GHz and 2GB RAM) running CentOS
6.5. The algorithms are implemented in C++ and compiled with g++ using
optimization option -O3 1 .

To make a comprehensive assessment, we used both random bipartite graphs
and large bipartite graphs from real world complex networks.

6.1 Performance on random graphs

Random graphs are commonly served as benchmark instances in the literature
[7,20]. In this type of graphs, every possible edge occurs independently with
fixed probability. For each graph, there are n vertices in each vertex set (i.e.,
n = |U | = |V |) and the probability that an edge exists between a pair of
vertices (u, v) ∈ U × V is p (p ∈ [0, 1]). A theoretical analysis in [5] showed
that the maximum half-size of the balanced bicliques in such graphs is in the
range [ lnn

ln(1/p)
, 2 lnn
ln(1/p)

] with high probability (when n is sufficiently large).

The evaluation on random graphs is composed of two parts. The first part
concerns the B&B algorithms and ILP formulations with or without addi-
tional inequalities. The second part involves evaluations of a more sophisti-
cated method, the Branch-and-Cut (B&C) algorithm, which integrates formu-
lations and generates valid inequalities on demand.

6.1.1 Results of B&B algorithms and ILP formulations

We compare the performance of six algorithms including both the existing
approaches and the new approaches proposed in this work. The first two al-
gorithms are B&B algorithms while the last four are different mathematical
formulations solving with CPLEX 12.6.1.

• BBClq: a trimmed version of the algorithms presented in [9] for the more
general problem where G might not be bipartite, without the bit-parallel
technique [12] and the operation of bit-vector intersection.
• ExtBBClq: the extended version of BBClq combining UBP as presented
in Section 4.2.
• IP0: the mathematical formulation proposed in [5].

1 The code is available at: https://github.com/joey001/mbbp_exact.
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Fig. 3. Average B&B tree nodes of the compared algorithms on random graphs
against different edge densities.

• IP1: The IP0 formulation enhanced with additional valid inequalities of
Section 5.3.
• NIP0: The new mathematical formulation proposed in Section 5.
• NIP1: The NIP0 formulation enhanced with additional valid inequalities
in Section 5.3.

We first generate 30 instances for each configuration of n = 50 and p ∈
{0.05, ..., 1}. Figures 2 and 3 summarize the performance of the aforemen-
tioned algorithms on these instances. One can observe that both BBClq and
ExtBBClq are quite competitive when the graph density is less than 0.75.
However, the time consumption increases exponentially with the increase of
the graph density. Indeed, BBClq spends 165, 819 and 1806 seconds while
ExtBBClq spends 154, 942 and 1790 seconds when the densities are 0.85, 0.90
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Fig. 4. Average upper bounds of linear relaxation against different edge densities.

and 0.95 respectively. On very dense graphs, ExtBBClq performs equally well
as BBClq. These observations are also confirmed by the number of B&B tree
nodes they enumerate in Figure 3. Indeed, we observe that ExtBBClq has a
significantly smaller number of B&B tree nodes than BBClq only when the
density is less than 0.35.

As for the four ILP formulations (IP0, IP1, NIP0, NIP1), when p ≤ 0.55, NIP0
and NIP1 perform better than IP0 and IP1; otherwise, the reverse is true. In
fact, when p > 0.55, the computation time of NIPs increases dramatically until
p is around 0.8, and then drops beyond this density. However, from Figure 3, we
observe that the new formulations lead to significant fewer B&B tree nodes
with only one exception when p = 0.95. Concerning the valid inequalities,
the performance is generally better with these valid inequalities than without
them, especially when the graphs are not very dense.

Meanwhile, for all the tested random graphs, the time consumption of UBP
is insignificant with respect to the whole search time (less than 0.01 seconds)
for these instances. The number of iterations for propagating upper bounds is
also trivial (closely around 3 for all the configurations).

Finally, Figure 4 shows a comparison of the linear relaxations of four ILP
formulations (LP IP0, LP IP1, LP NIP0 and LP NIP1 correspondingly). In
terms of the gap between LP IP0 and LP NIP0, when p ≤ 0.6, the later is
better than the first one; otherwise LP IP0 is better. Indeed, the gap between
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LP IP0 (or LP IP1) and optimal values is quite small for very dense graphs
(p ≥ 0.95). This observation generally matches the above conclusion that
NIP performs better when p ≤ 0.55 while IP0 and IP1 perform very well for
dense graphs. Meanwhile, one notices that the formulations with the valid
inequalities always lead to better or equal upper bounds. Actually, LP IP1
with our valid inequalities can even achieve better bounds than LP NIP0 and
LP NIP1.

6.1.2 Branch-and-cut

The valid inequalities introduced in this paper open the way to a Branch-and-
Cut (B&C) algorithm implementation, where only necessary cuts would be
generated. A key issue in designing such an algorithm is how to generate valid
inequalities on demand, or find hyperplanes to separate the current fractional
solution (this problem is called the separation problem [16]). In our case, by
setting ℓ = max

i∈U
ubi (i.e., S

ℓ = U), the problem of separating inequality (12)

(Section 5.3) can be stated as follows.

The separation problem: Given a weighted bipartite graph G = (U, V,E, f)
with vertex weight function f(i) = (ℓ−ubi)x

∗
i for i ∈ U ∪V , x∗

i is the optimal
solution of the linear relaxation. Does there exist a vertex-weight neighbor-
disjoint subset T ℓ ⊆ U such that

∑

j∈T ℓ

f(j) > ℓ−
∑

i∈U

x∗
i ?

One notices that the separation problem is equivalent to detecting the max-
imum weight stable set from a general graph G′ = (U,E ′, f) where an edge
{i, j} exists in E ′ if i and j have common neighbors in G (i.e., wij > 0). It
is well known that the maximum weight stable set problem in general graphs
is NP-hard [21], and thus unlikely to be solved in polynomial time. However,
there are many heuristic algorithms for the maximum stable set problem that
can be used to separate the violated inequalities. In our case, we adapt a fast
heuristic from [11] to find large stable sets. The algorithm works as follows.
In each round, we initialize set I with a vertex from U and find a maximal
vertex-weight neighbor-disjoint subset including I. To achieve this, we consis-
tently take a vertex of maximum weight from {i : ∀j ∈ I, wij = 0} and add it
to I until no such vertex exists. Then, we test if the associated inequality is
violated and proceed to the next round.

Moreover, in our B&C implementation, we select NIP0 as the base formulation
since it incorporates less constrains. Noticing that the performances of NIP0
and IP0 complement each other on random graphs, we add the inequalities
of IP0 for graphs of edge density larger than 0.55. We also limit the num-
ber of cuts to ⌈0.6|U ∪ V |⌉ per search node (with reference to the successful
B&C algorithm in [3]). The results of the B&C algorithm together with the
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Fig. 5. Comparison of B&C with the other methods in terms of average computation
times against different edge densities.

other methods in terms of average computational times for random graphs are
presented in Figure 5. For graphs with p ≥ 0.45, B&C dominates all above
ILP formulations, including those with pre-added valid inequalities. For graph
with densities smaller than 0.45, the computational times of B&C are com-
parable or more favorable than that of the underlying formulation NIP0. In a
nutshell, this experiment shows that a further improvement can be achieved
by combining the formulations and generating valid inequalities heuristically.

6.2 Performance on large real-life instances

In this section, we show experimental results to evaluate the performance of ex-
act algorithms (formulations) on very large real-life networks. The data set in-
cludes 30 bipartite networks from the Koblenz Network Collection (KONECT)
[8], which contains hundreds of networks derived from real-life applications,
including social networks, hyperlink networks, authorship networks, physical
networks, interaction networks and communication networks. The underly-
ing applications do not necessarily require the determination of a maximum
balanced biclique. However, these instances are interesting for our evaluation
purpose since they are relevant representative examples of real-life bipartitite
graphs, whose main features are summarized in Table 1, including the number
of vertices and edge density. Irrelevant information for solving MBBP, such as
multiple edges, vertex or edges weights have been ignored.
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6.2.1 LNIP: adaption of existing formulations

We indicated that the new formulation of Section 5, which relies on the number
of vertices of the graph, has much fewer constraints compared to the previous
formulation [5]. On the other hand, our preliminary experiments disclosed
that, since many KONECT instances are sparse and very large, most of these
instances cannot be solved by CPLEX even with the new formulation with
or without the additional valid inequalities (NIP0 and NIP1). Indeed, given
a time limit of 3 hours, only 3 of the 30 selected instances (i.e., unicodelang,
moreno crime and jester1) can be solved on our computing platform.

To improve this situation, we devise a decomposition approach that divided
the initial problem into several sub-problems and then solve each problem by
NIP0. Suppose we have a vertex k ∈ U , and Vk = NG(k), Uk = ∪i∈Vk

NG(i),
then the maximum balanced biclique including vertex k must be contained in
Gk[Uk, Vk]. Thus, the following mathematical formulation can be introduced
to solve MBBP.

max
k∈U

max zk (13)

subject to:
xk = 1 (14)

zk =
∑

j∈Uk

xj (15)

zk =
∑

i∈Vk

xi (16)

zk − (1− xi)ubk ≤
∑

j∈NGk
(i)

xj ∀i ∈ Uk ∪ Vk (17)

xi ∈ {0, 1}, ∀i ∈ Uk ∪ Vk (18)

zk ∈ Z+ (19)

This formulation (called LNIP0) can be considered as a refinement of the
aforementioned NIP0. In this formulation, zk is the largest balanced biclique
size including vertex k. LNIP0 allows us to decompose the input graph into
several subgraph Gk (k ∈ U) and solve MBBP in each subgraph Gk indepen-
dently, the overall best solution being the optimal solution in the initial graph.
Indeed, for each vertex k, if its associated upper bound ubk is smaller than
or equal to the current best solution, we can save the effort of solving MBBP
in subgraph Gk since no better solution can exist in Gk. Also, according to
our observation, it is not worth using the valid inequalities of Section 5.3 for
solving KONECT instances. This can be explained in a straight-forward way.
After decomposition, each subgraph Gk becomes easy and can be solved effec-
tively with NIP0, while calling UBP to generate additionnal valid inequalities
for Gk (the time complexity is bounded by O(|U |4) in this case) will only yield
an unnecessary overhead.
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6.2.2 Experimental results of KONECT instances

We show the computational performances of BBClq, ExtBBClq and LNIP0
for KONECT instances in Table 1. A cut-off time limit of 3 hours (10800
seconds) is given to each algorithm. Column “instance”, “|U |”,“|V |”,“density”
indicates the general information of the graphs. Column “BEST” shows the
best half-size found by all algorithms. An extra “*” indicates the optimality
of this best value. Column “time” reports the pre-processing time (the time
of running UBP) and column “iter” shows the average number of while loops
(i.e., lines 11-17, Algorithm 2) needed to stabilize the upper bound of all the
vertices. For each algorithm, we report the average time consumed to solve
the corresponding instance (the time for pre-processing is also included). The
shortest times among the three approaches are highlighted by bold font. If the
instances cannot be solved within 3 hours, we show the best lower bound and
upper bound in brackets. However, for instances actor-movie, dbpedia-team
and gottron-trec, CPLEX still fails due to the memory limitation.

First of all, the time consumption of UBP is still insignificant with respect to
the whole search time. The number of iterations for propagating upper bounds
never exceed 100. For relatively small graphs like the first four cases in Table
1, the original BBClq algorithm performs equally well or even better than
ExtBBClq and LNIP0 in terms of computation time. However, the extended
algorithm ExtBBClq and new formulation LNIP0 outperform BBClq for the
remaining very large instances. For example, for large instances like dbpedia-
writer, dbpedia-starring, dbpedia-producer, ExtBBClq and LNIP0 even im-
prove the computation time with four orders of magnitude. LNIP0 fails to
achieve the optimal solution for some instances, like github, bookcrossing full-
rating and stackexchange-stackoverflow while performs well on most other
instances. LNIP0 can be considered as a complementary algorithm to ExtBB-
Clq given that LNIP0 performs significantly better than ExtBBClq for jester1,
dblp-author.

In Figure 6, we compare the number of B&B tree nodes of BBClq and ExtB-
BClq for the 21 instances that can be solved by both algorithms in 3 hours.
One can find that ExtBBClq enumerates fewer tree nodes for all the real-life
instances, which confirms that the upper bounds actually help to reduce the
search tree. The gain is quite significant for dbpedia-producer, dbpedia-writer
and moreno crime, where ExtBBClq prunes more than half of the nodes com-
pared to BBClq.
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Table 1
Computational results of the 3 approaches for KONECT instances. Instances are
listed in increasing order of the number of vertices.

instance |U | |V |
density
(×10−4)

BEST
UBP Computation time (s)

time (s) iter BBClq ExtBBClq LNIP0

unicodelang 254 614 8.047 4* 0.02 5 0.01 0.02 0.04

moreno crime crime 829 551 3.231 2* 0.05 3 0.05 0.06 0.06

opsahl-ucforum 899 522 71.855 5* 0.09 10 0.18 0.13 4.65

escorts 10106 6624 0.756 6* 5.69 6 7.68 10.05 17.94

jester1 73421 100 563.376 100* 1.86 1 1204.64 1123.66 188.67

pics ut 17122 82035 1.637 27 21.84 7 [27-] [23-] [26-79]

youtube-
groupmemberships

94238 30087 0.103 12* 0.96 21 222.88 11.49 407.10

dbpedia-writer 89356 46213 0.035 6* 0.19 12 283.16 0.35 0.27

dbpedia-starring 76099 81085 0.046 6* 1.07 31 530.61 4.67 1.19

github 56519 120867 0.064 12* 1.01 16 677.72 150.66 [10-45]

dbpedia-recordlabel 168337 18421 0.075 6* 24.33 7 214.45 24.67 25.09

dbpedia-producer 48833 138844 0.031 6* 0.27 11 535.44 0.62 0.43

dbpedia-location 172091 53407 0.032 5* 0.18 8 633.98 0.52 0.26

dbpedia-occupation 127577 101730 0.019 6* 0.27 8 909.03 1.29 7.35

dbpedia-genre 258934 7783 0.230 7* 3.94 9 171.86 5.83 11.13

discogs lgenre 270771 15 1021.199 15* 0.06 1 37.08 1.01 9.84

bookcrossing full-
rating

105278 340523 0.032 13* 5.11 33 3102.66 426.37 [8-41]

flickr-
groupmemberships

395979 103631 0.208 36 47.37 36 [34-] [36-] [22-147]

actor-movie 127823 383640 0.030 8* 5.54 27 6533.01 1671.29 -

stackexchange-
stackoverflow

545196 96680 0.025 9* 4.62 29 4107.56 265.8 [6-25]

bibsonomy-2ui 5794 767447 0.575 8* 1.56 7 491.36 13.84 33.96

dbpedia-team 901166 34461 0.044 6* 3.08 15 2982.24 241.06 -

reuters 781265 283911 0.273 39 611.76 61 [35-] [39-] [19-192]

discogs style 1617943 383 38.868 38 17.42 22 [23-] [38-] [37-93]

gottron-trec 556077 1173225 0.128 83 549.21 35 [33-] [38-] -

edit-frwiktionary 5017 1907247 0.773 19* 9.56 9 944.21 152.5 [16-36]

discogs affiliation 1754823 270771 0.030 26* 12.01 17 [1-] 1688.95 [9-117]

wiki-en-cat 1853493 182947 0.011 14* 7.67 20 [1-] 28.72 22.27

edit-dewiki 425842 3195148 0.042 40 93.68 23 [1-] [40-] [1-184]

dblp-author 1425813 4000150 0.002 10* 19.86 21 [1-] 403.16 21.30

7 Conclusions and future work

In this paper, we proposed new ideas for designing exact algorithms for the
NP-hard Maximum Balanced Biclique Problem in bipartite graphs. We intro-
duced the Upper Bound Propagation (UBP) procedure for the sake of estimat-
ing tight upper bound involving each vertex. UBP starts from the initial bound
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Fig. 6. The base-10 log scaled number of B&B tree nodes explored by the BBClq
and ExtBBClq algorithms for the 21 solvable instances.

of each vertex and improves the upper bounds by a propagation procedure.
We used UBP to enhance the existing B&B algorithm BBClq. Additionally,
we proposed a new and more compact ILP formulation for MBBP that relies
on the vertices of the input graph, contrary to the existing formulation that
is based on the edges of the complement graph. We also devised a method
of generating valid inequalities to tighten the MBBP formulations. Finally,
we considered a Branch-and-Cut implementation that combines the new and
existing formulations, as well as a fast clique-based heuristic to generate valid
inequalities on demand. Our experiments on random bipartite graphs demon-
strated the interest of the proposed ideas for creating effective B&B and B&C
algorithms.

Based on these approaches, we then explored their applications on very large
sparse networks from real-life applications (KONECT). Because of memory
limitations, we proposed a decomposition scheme to exploit the new formu-
lation to address the largest instances. Experiments also confirmed that new
bounding techniques and new ILP formulations are two of the most competi-
tive approaches for very large instances in this benchmark set.

For future work, it would be worthy of studying the bit-parallel technique [9,12]
within our algorithms to further improve their performances. The idea of the
upper bound propagation could also be adapted to other similar optimization
problems.
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